ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть О – центр правильного многоугольника A1A2A3...An, X
– произвольная точка плоскости. Докажите, что: б) Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]
Докажите, что при произвольном выборе точки O равенство = k + (1 – k) является необходимым и достаточным условием принадлежности различных точек A, B, C одной прямой.
Пусть О – центр правильного многоугольника A1A2A3...An, X
– произвольная точка плоскости. Докажите, что: б)
На прямой даны точки A1, ..., An и B1, ..., Bn–1. Докажите, что = 1.
На сторонах треугольника заданы точки, которые делят стороны в одном и том же отношении (в каком-либо одном направлении обхода). Докажите, что точки пересечения медиан данного треугольника и треугольника, имеющего вершинами точки деления, совпадают.
Стороны параллелограмма разделены по обходу в равных отношениях. Докажите, что точки деления служат вершинами параллелограмма, а центры симметрии этих параллелограммов совпадают.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|