ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали выпуклого четырёхугольника делят его на четыре треугольника. Оказалось, что сумма площадей двух противоположных (имеющих только общую вершину) треугольников равна сумме площадей двух других треугольников. Докажите, что одна из диагоналей делится другой диагональю пополам. Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]
В треугольнике точку пересечения биссектрис соединили с вершинами, в результате он разбился на 3 меньших треугольника. Один из меньших треугольников подобен исходному. Найдите его углы.
При каких n > 2 можно расставить целые числа от 1 до n по кругу так, чтобы сумма каждых двух соседних чисел делилась нацело на следующее за ними по часовой стрелке?
Диагонали выпуклого четырёхугольника делят его на четыре треугольника. Оказалось, что сумма площадей двух противоположных (имеющих только общую вершину) треугольников равна сумме площадей двух других треугольников. Докажите, что одна из диагоналей делится другой диагональю пополам.
На двух противоположных гранях игрального кубика нарисовано по одной точке, на
двух других противоположных – по две точки, и на двух оставшихся – по три точки. Из восьми таких кубиков сложили куб 2×2×2 и посчитали суммарное число точек на каждой из его шести граней.
Найдите все действительные корни уравнения (x + 1)21 + (x + 1)20(x – 1) + (x + 1)19(x – 1)² + ... + (x – 1)21 = 0.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|