ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

Доказать: если стороны треугольника образуют арифметическую прогрессию, то радиус вписанного круга равен $ {\frac{1}{3}}$ одной из высот.

Задача 2

Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.

Задача 3

В некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).

Задача 4

Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.

Задача 5

В окружность S вписан шестиугольник ABCDEF. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой.


© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .