ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98487
Темы:    [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

В клетках таблицы 4×4 записаны числа так, что сумма соседей у каждого числа равна 1 (соседними считаются клетки, имеющие общую сторону).
Найдите сумму всех чисел таблицы.


Решение

Разобьём все клетки на 6 групп (на рисунке клетки каждой группы обозначены своим символом). Каждая группа состоит из всех соседей какой-то одной клетки, поэтому сумма чисел в ней равна 1. Следовательно, сумма всех чисел равна 6.


Ответ

6.

Замечания

3 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2000/2001
Номер 22
вариант
Вариант осенний тур, тренировочный вариант, 8-9 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .