ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98238
Темы:    [ Отношение порядка ]
[ Примеры и контрпримеры. Конструкции ]
[ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Во время бала каждый юноша танцевал вальс с девушкой либо более красивой, чем на предыдущем танце, либо более умной, но большинство (не меньше 80%) – с девушкой одновременно более красивой и более умной. Могло ли такое быть? (Юношей и девушек на балу было поровну.)


Решение

  Вот один из возможных примеров. На балу было 10 девушек и 10 юношей (дадим им номера 1, 2, ..., 10). Красота девушек росла с ростом номера. Девушка №10 была глупее всех, а ум остальных возрастал от первой девушки до девятой. В первом танце пары были составлены из девушек и юношей с одинаковыми номерами. Во втором танце юноша №1 танцевал с девушкой №2, юноша №2 – с девушкой №3, ..., юноша №9 – с девушкой №10, юноша №10 – с девушкой №1.
  Таким образом, каждый юноша с первого по восьмого танцевал во втором танце с девушкой одновременно более умной и более красивой, чем в первом танце, девятый юноша получил девушку более красивую, а десятый – более умную, чем в первом танце.


Ответ

Могло.

Замечания

3 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 16
Дата 1994/1995
вариант
Вариант осенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .