ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66005
Темы:    [ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
Докажите, что не менее, чем десять пар шпионов донесли друг на друга.


Решение

См. решение задачи 98031 и замечание к нему.

Замечания

8 баллов

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2016/17
класс
Класс 11
задача
Номер 11.3.3

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .