ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65720
Темы:    [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Точку внутри выпуклого четырёхугольника соединили со всеми вершинами и с четырьмя точками на сторонах (по одной на стороне). Четырёхугольник оказался разделён на восемь треугольников с одинаковыми радиусами описанных окружностей. Докажите, что исходный четырёхугольник – вписанный.


Решение

Пусть выбранная точка O внутри четырёхугольника ABCD соединена с точкой K на стороне AB. Углы OAK и OBK опираются на общую хорду равных окружностей. Их сумма не равна 180°, поскольку меньше суммы углов треугольника OAB. Поэтому эти углы равны. Значит,  OA = OB.  Аналогично все вершины четырёхугольника ABCD равноудалены от O, что и требовалось доказать.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2015/16
Номер 37
вариант
Вариант весенний тур, базовый вариант, 10-11 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .