ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65072
Тема:    [ Четность и нечетность ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Незнайка выписал по кругу 11 натуральных чисел. Для каждых двух соседних чисел он посчитал их разность (из большего вычел меньшее). В результате среди найденных разностей оказалось четыре единицы, четыре двойки и три тройки. Докажите, что Незнайка где-то допустил ошибку.


Решение

Запишем каждую из наших разностей со знаком плюс, если в соответствующей паре чисел большее стоит перед меньшим по часовой стрелке, и со знаком минус в противном случае. У нас получились 11 разностей между числом и следующим за ним по часовой стрелке; значит, сумма всех этих чисел равна нулю, то есть чётна. Но это невозможно, поскольку среди них ровно семь нечётных чисел.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2009-2010
Этап
Вариант 4
Класс
Класс 9
задача
Номер 06.4.9.5
олимпиада
Название Олимпиада имени Леонарда Эйлера (для 8 классов)
год/номер
Номер 2 (2010)
тур
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .