ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64455
Темы:    [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC  AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что  AE = ED.  Найдите угол DAC.


Решение

По теореме о внешнем угле  ∠AED = 90° + ∠B = 270° – 2∠A  (см. рис.). Следовательно,  ∠EAD = ½ (180° – ∠AED) = ∠A – 45°.


Ответ

45°.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по геометрии
год
Год 2013
год
Год 2013
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .