ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64441
Темы:    [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Автор: Кноп К.А.

Найдётся ли такое десятизначное число, записанное десятью различными цифрами, что после вычеркивания из него любых шести цифр получится составное четырёхзначное число?


Решение

  Таково, например, число 1397245680. В самом деле, если не вычеркнута хотя бы одна из последних шести цифр, то оставшееся четырёхзначное число чётно или делится на 5, а если все они вычеркнуты, то осталось число 1397, кратное 11.

  Другой пример: 1379245680, поскольку 1379 кратно 7.


Ответ

Найдётся.

Замечания

Баллы: 8-9 кл. – 4, 10-11 кл. – 3.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 35
Дата 2013/2014
вариант
Вариант осенний тур, базовый вариант, 8-9 класс
задача
Номер 2
олимпиада
Название Турнир городов
Турнир
Номер 35
Дата 2013/2014
вариант
Вариант осенний тур, базовый вариант, 10-11 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .