Условие
Пусть
P — точка Брокара треугольника
ABC;
R1,
R2 и
R3 — радиусы описанных окружностей
треугольников
ABP,
BCP и
CAP. Докажите, что
R1R2R3 =
R3,
где
R — радиус описанной окружности треугольника
ABC.
Решение
По теореме синусов
R1 =
AB/2 sin
APB,
R2 =
BC/2 sin
BPC и
R3 =
CA/2 sin
CPA. Ясно также, что
sin
APB = sin
A, sin
BPC = sin
B и
sin
CPA = sin
C.
Источники и прецеденты использования
|
книга |
Автор |
Прасолов В.В. |
Год издания |
2001 |
Название |
Задачи по планиметрии |
Издательство |
МЦНМО |
Издание |
4* |
глава |
Номер |
5 |
Название |
Треугольники |
параграф |
Номер |
12 |
Название |
Точки Брокара |
Тема |
Точки Брокара |
задача |
Номер |
05.120 |