ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56972
Тема:    [ Точки Брокара ]
Сложность: 6
Классы: 9
В корзину
Прислать комментарий

Условие

Пусть P — точка Брокара треугольника ABCR1, R2 и R3 — радиусы описанных окружностей треугольников ABP, BCP и CAP. Докажите, что  R1R2R3 = R3, где R — радиус описанной окружности треугольника ABC.

Решение

По теореме синусов  R1 = AB/2 sin APB, R2 = BC/2 sin BPC и  R3 = CA/2 sin CPA. Ясно также, что  sin APB = sin A, sin BPC = sin B и  sin CPA = sin C.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 12
Название Точки Брокара
Тема Точки Брокара
задача
Номер 05.120

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .