ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что  SABCD $ \leq$ (AB . BC + AD . DC)/2.

Вниз   Решение


Постройте треугольник ABC, зная три точки A', B', C', симметричные точке пересечения высот треугольника относительно сторон BC, CA, AB (оба треугольника остроугольные).

ВверхВниз   Решение


Постройте треугольник ABC, зная три точки A', B', C', симметричные центру O описанной окружности этого треугольника относительно сторон BC, CA, AB.

ВверхВниз   Решение


Докажите, что  SABC $ \leq$ AB . BC/2.

ВверхВниз   Решение


Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.

ВверхВниз   Решение


а) Постройте треугольник ABC, зная три точки A', B', C', в которых биссектрисы его углов пересекают описанную окружность (оба треугольника остроугольные).
б) Постройте треугольник ABC, зная три точки A', B', C', в которых высоты треугольника пересекают описанную окружность (оба треугольника остроугольные).

ВверхВниз   Решение


В треугольнике ABC провели биссектрисы BB' и CC', а затем стёрли весь рисунок, кроме точек A, B' и C'.
Восстановите треугольник ABC при помощи циркуля и линейки.

ВверхВниз   Решение


Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.

Вверх   Решение

Задача 54205
Темы:    [ Прямоугольные треугольники (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 2
Классы: 8,9
В корзину
Прислать комментарий

Условие

Катеты прямоугольного треугольника равны 12 и 16. Найдите высоту, проведённую из вершины прямого угла.


Ответ

9,6.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1968

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .