ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что  SABCD $ \leq$ (AB . BC + AD . DC)/2.

Вниз   Решение


Постройте треугольник ABC, зная три точки A', B', C', симметричные точке пересечения высот треугольника относительно сторон BC, CA, AB (оба треугольника остроугольные).

ВверхВниз   Решение


Постройте треугольник ABC, зная три точки A', B', C', симметричные центру O описанной окружности этого треугольника относительно сторон BC, CA, AB.

ВверхВниз   Решение


Докажите, что  SABC $ \leq$ AB . BC/2.

ВверхВниз   Решение


Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.

ВверхВниз   Решение


а) Постройте треугольник ABC, зная три точки A', B', C', в которых биссектрисы его углов пересекают описанную окружность (оба треугольника остроугольные).
б) Постройте треугольник ABC, зная три точки A', B', C', в которых высоты треугольника пересекают описанную окружность (оба треугольника остроугольные).

ВверхВниз   Решение


В треугольнике ABC провели биссектрисы BB' и CC', а затем стёрли весь рисунок, кроме точек A, B' и C'.
Восстановите треугольник ABC при помощи циркуля и линейки.

ВверхВниз   Решение


Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.

Вверх   Решение

Задача 35494
Тема:    [ Периодические и непериодические дроби ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что дроби 1000/2001 и 1001/2001 имеют равную длину периодов.


Подсказка

1 = 0,999999...


Решение

  Заметим, что сумма двух данных дробей равна 1. Пусть первая дробь имеет десятичную запись 0,a1a2a3... Рассмотрим число R, выраженное десятичной дробью, меньшей 1, у которой на i-м месте после запятой, стоит цифра  9 – ai.  Тогда в сумме  1000/2001 + R  в каждом разряде после запятой будет стоять 9, то есть  1000/2001 + R = 0,9999... = 1.  Таким образом,  R = 1001/2001.  Теперь видно, что если ab...z – некоторая комбинация цифр, являющаяся периодом дроби 1000/2001, то комбинация цифр  (9 – a)(9 – b)...(9 – z)  есть период дроби 1001/2001. Следовательно, период дроби 1001/2001 не длиннее периода 1000/2001.
  Аналогично показываем, что период дроби 1000/2001 не длиннее период дроби 1001/2001. Следовательно, периоды этих двух дробей равны.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .