ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109483
Темы:    [ Примеры и контрпримеры. Конструкции ]
[ Задачи с ограничениями ]
Сложность: 3
Классы: 7,8,9,11
В корзину
Прислать комментарий

Условие

Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке  1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18,  то наименьшая из разностей между номерами соседних (по кругу) секторов равна  12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?


Решение

  Если секторы занумерованы в следующем порядке:  1, 11, 2, 12, 3, 13, 4, 14, 5, 15, 6, 16, 7, 17, 8, 18, 9, 19, 10, 20, то наименьшая из разностей между соседними номерами равна 9.
  Эта величина не может быть больше 9, так как в противном случае при любой нумерации рядом (и слева, и справа) с сектором номер 10 может находиться только сектор с номером 20, что невозможно.


Ответ

Может; 9.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 70
Год 2007
вариант
Класс 11
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .