ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



Задача 61537

Темы:   [ Лингвистика ]
[ Задачи-шутки ]
Сложность: 3
Классы: 7,8,9,10,11

Восстановите алфавит племени Мумбо-Юмбо из задачи 2.6.

Прислать комментарий     Решение

Задача 61540

Темы:   [ Комплексная экспонента ]
[ Задачи-шутки ]
Сложность: 3
Классы: 10,11

После экспериментов с мнимой единицей, Коля Васин занялся комплексной экспонентой. Пользуясь формулами задачи 61115, он смог доказать, что  sin x  всегда равен нулю, а  cos x  – единице:

   
Где ошибка в приведённых равенствах?

Прислать комментарий     Решение

Задача 79446

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи-шутки ]
Сложность: 3
Классы: 6,7,8

Покупатель взял у продавца товара на 10 р. и дал 25 р. У продавца не нашлось сдачи, и он разменял деньги у соседа. Когда они расплатились и покупатель ушёл, сосед обнаружил, что 25 р. фальшивые. Продавец вернул соседу 25 р. и задумался. Какой убыток понёс продавец?
Прислать комментарий     Решение


Задача 64507

Темы:   [ Обыкновенные дроби ]
[ Задачи-шутки ]
Сложность: 3+
Классы: 6,7,8

Из спичек выложено неверное равенство (см. рисунок). Покажите, как переложить одну спичку, чтобы получилось равенство, в котором значения левой и правой частей различаются меньше, чем на 0,1.

Прислать комментарий     Решение

Задача 61541

Темы:   [ Разные задачи на разрезания ]
[ Задачи-шутки ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 7,8,9,10

``65 = 64 = 63''. Тождество Кассини лежит в основе одного геометрического парадокса. Он заключается в том, что можно взять шахматную доску, разрезать ее на четыре части, как показано ниже, а затем составить из этих же частей прямоугольник:




\begin{picture}
(80,80)\multiput(0,0)(0,10){9}{\line(1,0){80}}
\multiput(0,0)(...
...(0,1){80}}
\put(0,50){\line(1,0){80}}\qbezier(50,0)(40,25)(30,50)
\end{picture}
        
\begin{picture}
(150,50)\multiput(0,0)(0,10){6}{\line(1,0){130}}
\multiput(0,0...
...0,1){30}}\put(50,20){\line(0,1){30}}
\qbezier(0,0)(65,25)(129,50)
\end{picture}



Как расположить те же четыре части шахматной доски, чтобы доказать равенство ``64=63''?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .