ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны две таблицы A и B, в каждой m строк и n столбцов. В каждой клетке каждой таблицы записано одно из чисел 0 или 1, причём в строках таблиц числа не убывают (при движении по строке слева направо), и в столбцах таблиц числа не убывают (при движении по столбцу сверху вниз). Известно, что при любом k от 1 до m сумма чисел в верхних k строках таблицы A не меньше суммы чисел в верхних k строках таблицы B. Известно также, что всего в таблице A столько же единиц, сколько в таблице B. Докажите, что при любом l от 1 до n сумма чисел в левых l столбцах таблицы A не больше суммы чисел в левых l столбцах таблицы B.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 87]      



Задача 67378

Тема:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3+
Классы: 8,9,10,11

В прямоугольный треугольник $ABC$ вписана окружность, касающаяся гипотенузы $AB$ в точке $T$. Квадраты $ATMP$ и $BTNQ$ лежат вне треугольника. Докажите, что площади треугольников $ABC$ и $TPQ$ равны.
Прислать комментарий     Решение


Задача 52716

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 8,9

В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная, отрезок которой внутри треугольника равен b.
Найдите площадь треугольника, отсечённого этой касательной.

Прислать комментарий     Решение

Задача 52816

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9

В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная так, что её отрезок внутри треугольника равен b. Найдите площадь треугольника, отсеченного этой касательной.

Прислать комментарий     Решение


Задача 55461

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Периметр треугольника ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Вписанные и описанные окружности ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите, что прямая, делящая пополам периметр и площадь треугольника, проходит через центр его вписанной окружности.

Прислать комментарий     Решение

Задача 55462

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Периметр треугольника ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Вписанные и описанные окружности ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите, что прямая делит периметр и площадь треугольника в равных отношениях тогда и только тогда, когда она проходит через центр вписанной окружности треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .