ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 238]      



Задача 57712

Тема:   [ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3
Классы: 9

Точки A и B движутся по двум фиксированным лучам с общим началом O так, что величина $ {\frac{p}{OA}}$ + $ {\frac{q}{OB}}$ остается постоянной. Докажите, что прямая AB при этом проходит через фиксированную точку.
Прислать комментарий     Решение


Задача 57713

Тема:   [ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3
Классы: 9

Через точку M пересечения медиан треугольника ABC проведена прямая, пересекающая прямые BC, CA и AB в точках A1, B1 и C1. Докажите, что (1/$ \overline{MA_1}$) + (1/$ \overline{MB_1}$) + (1/$ \overline{MC_1}$) = 0 (отрезки MA1, MB1 и MC1 считаются ориентированными).
Прислать комментарий     Решение


Задача 57714

Тема:   [ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3
Классы: 9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Отрезки BB1 и CC1, CC1 и AA1, AA1 и BB1 пересекаются в точках A2, B2 и C2 соответственно. Докажите, что если $ \overrightarrow{AA_2}$ + $ \overrightarrow{BB_2}$ + $ \overrightarrow{CC_2}$ = $ \overrightarrow{0}$, то AB1 : B1C = CA1 : A1B = BC1 : C1A.
Прислать комментарий     Решение


Задача 57717

Тема:   [ Вспомогательные проекции ]
Сложность: 3
Классы: 9

Точка X лежит внутри треугольника ABC, $ \alpha$ = SBXC, $ \beta$ = SCXA и  $ \gamma$ = SAXB. Пусть A1, B1 и C1 — проекции точек A, B и C на произвольную прямую l. Докажите, что длина вектора $ \alpha$$ \overrightarrow{AA_1}$ + $ \beta$$ \overrightarrow{BB_1}$ + $ \gamma$$ \overrightarrow{CC_1}$ равна ($ \alpha$ + $ \beta$ + $ \gamma$)d, где d — расстояние от точки X до прямой l.
Прислать комментарий     Решение


Задача 55361

Тема:   [ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3
Классы: 8,9

Пусть точки A1, B1, C1 — середины сторон соответственно BC, AC и AB треугольника ABC. Докажите, что для любой точки O выполняется равенство $ \overrightarrow{OA_{1}} $ + $ \overrightarrow{OB_{1}} $ + $ \overrightarrow{OC_{1}} $ = $ \overrightarrow{OA} $ + $ \overrightarrow{OB} $ + $ \overrightarrow{OC} $.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 238]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .