ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 74]      



Задача 109945

Темы:   [ Теория игр (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 8,9,10

В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4, 21998 . Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?
Прислать комментарий     Решение


Задача 111914

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 9,10

Назовём последовательность натуральных чисел интересной, если каждый её член, кроме первого, является либо средним арифметическим, либо средним геометрическим двух соседних с ним членов. Сеня начал последовательность с трёх натуральных чисел, образующих возрастающую геометрическую прогрессию. Он хотел бы продолжить свою последовательность до бесконечной интересной последовательности, которая ни с какого момента не становится ни арифметической, ни геометрической прогрессией.
Может ли оказаться, что этого нельзя сделать?

Прислать комментарий     Решение

Задача 111918

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10

Дана такая возрастающая бесконечная последовательность натуральных чисел a1, ..., an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
Прислать комментарий     Решение


Задача 67494

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Геометрическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Существует ли такая бесконечная последовательность действительных чисел $a_1$, $a_2$, $a_3$, ..., что $a_1 = 1$ и для всех натуральных $k$ выполняется равенство $$a_k = a_{2k} + a_{3k} + a_{4k} + \ldots ?$$
Прислать комментарий     Решение


Задача 73737

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Рациональные и иррациональные числа ]
[ Разложение на множители ]
Сложность: 4
Классы: 9,10,11

Из последовательности  a,  a + d,  a + 2d,  a + 3d, ...,  являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d  рационально. Докажите это.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .