|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5. Внутри треугольника ABC взята точка X. Прямые AX, BX и CX пересекают стороны треугольника в точках A1, B1 и C1. Докажите, что если описанные окружности треугольников AB1C1, A1BC1 и A1B1C пересекаются в точке X, то X — точка пересечения высот треугольника ABC. Сколько существует шестизначных чисел, в записи которых есть хотя бы одна чётная цифра? Натуральное число называется совершенным, если оно равно сумме все своих собственных делителей, включая 1. Напечатать все совершенные числа, меньшие, чем заданное число М. Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел: X [p+1]< X [p+2]>X [p+3]<...> X[p+k]. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 277]
X [p+1]< X [p+2]>X [p+3]<...> X[p+k].
array[1..m] of array [ 1..n] of boolean;
подсчитать число чёрных прямоугольников, о которых шла
речь. Число действий должно быть порядка
mn.
Вводится два числа. В выходной файл записать их сумму. Пример входного файла 2 3 Пример выходного файла 5
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 277] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|