|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Является ли число степенью двойки? Вводится число. Напечатать YES, если оно является степенью двойки, NO - иначе Пример входного файла 8 Пример выходного файла YES Пример входного файла 22 Пример выходного файла NO Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ? Высота цилиндра равна h . В каждое основания вписан правильный треугольник со стороной a , причём один из этих треугольников повернут относительно другого на угол 60o . Найдите объём многогранника, вершинами которого являются все вершины этих треугольников. На лужайке росли 35 жёлтых и белых одуванчиков. После того как восемь белых облетели, а два жёлтых побелели, жёлтых одуванчиков стало вдвое больше чем белых. Сколько белых и сколько жёлтых одуванчиков росло на лужайке вначале? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 142]
На лужайке росли 35 жёлтых и белых одуванчиков. После того как восемь белых облетели, а два жёлтых побелели, жёлтых одуванчиков стало вдвое больше чем белых. Сколько белых и сколько жёлтых одуванчиков росло на лужайке вначале?
У учеников 5А класса было в сумме 2015 карандашей. Один из них потерял коробку с пятью карандашами, а вместо неё купил коробку, в которой 50 карандашей. Сколько теперь карандашей у учеников 5А класса?
Саша гостил у бабушки. В субботу он сел в поезд и приехал домой в понедельник. Саша заметил, что в этот понедельник число совпало с номером вагона, в котором он ехал, что номер его места в вагоне был меньше номера вагона и что в ту субботу, когда он садился в поезд, число было больше номера вагона. Какими были номера вагона и места?
На Солнечном острове живет 20 белых и 25 чёрных хамелеонов (хамелеоны – это животные, умеющие менять свой цвет). При встрече оба хамелеона меняют свой цвет на противоположный. Могут ли все хамелеоны окраситься в один цвет?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 142] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|