ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Попытайтесь получить миллиард (1000000000), перемножая два целых сомножителя, в каждом из которых не было бы ни одного нуля.

Вниз   Решение


Вершина A остроугольного треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что  $ \angle$BAH = $ \angle$OAC.

ВверхВниз   Решение


Сфера с центром в точке O проходит через вершины A , B и C треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и AB:CD = 4:11 . Проекциями точки O на плоскости ABD, BCD и CAD являются середины рёбер AB , BC и AC соответственно. Расстояние между серединами рёбер AB и CD равно 13. Найдите периметр треугольника KLM .

ВверхВниз   Решение


В круге отметили точку. Можно ли так разрезать этот круг на три части, чтобы из них можно было бы сложить новый круг, у которого отмеченная точка стояла бы в центре?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 185]      



Задача 88083

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Перестройки ]
Сложность: 2-
Классы: 5,6,7

В круге отметили точку. Можно ли так разрезать этот круг на три части, чтобы из них можно было бы сложить новый круг, у которого отмеченная точка стояла бы в центре?
Прислать комментарий     Решение


Задача 88084

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2
Классы: 5,6,7

Можно ли разрезать квадрат на четыре части так, чтобы каждая часть соприкасалась (т.е. имела общие участки границы) с тремя другими?
Прислать комментарий     Решение


Задача 102845

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2
Классы: 6,7

Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).


Прислать комментарий     Решение

Задача 103815

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Таблицы и турниры (прочее) ]
Сложность: 2
Классы: 6

Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

Прислать комментарий     Решение


Задача 103884

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .