|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что любой многочлен P(x) степени n можно единственным образом разложить по степеням x – c: P(x) =
причем коэффициенты ck могут быть найдены по формуле ck =
На мачте пиратского корабля развевается двухцветный прямоугольный флаг, состоящий из чередующихся чёрных и белых вертикальных полос одинаковой ширины. Общее число полос равно числу пленных, находящихся в данный момент на корабле. Сначала на корабле было 12 пленных, а на флаге — 12 полос; затем два пленных сбежали. Как разрезать флаг на две части, а затем сшить их, чтобы площадь флага и ширина полос не изменились, а число полос стало равным 10? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
Фермер огородил снаружи участок земли и разделил его на треугольники со стороной 50 м. В некоторых треугольниках он высадил капусту, а в некоторые пустил пастись коз. Помогите фермеру построить по линиям сетки дополнительные заборы как можно меньшей общей длины, чтобы защитить всю капусту от коз.
В углу шахматной доски 8×8 стоит фишка. Петя и Вася двигают фишку по очереди, начинает Петя. Он делает фишкой один ход как ферзём (пройденной считается только клетка, куда в итоге переместилась фишка), а Вася – два хода как королём (обе клетки считаются пройденными). Нельзя ставить фишку на клетку, где она уже бывала (включая исходную клетку). Кто не сможет сделать ход – проигрывает. Кто из ребят может играть так, чтобы всегда выигрывать, как бы ни играл соперник?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|