Версия для печати
Убрать все задачи
а) Квадрат разбит на прямоугольники. Цепочкой называется такое подмножество K множества этих прямоугольников, что существует сторона S квадрата, целиком закрытая проекциями прямоугольников из K, но при этом ни в какую точку S не проектируются внутренние точки двух прямоугольников из K (мы относим к прямоугольнику и его стороны). Доказать, что любые два прямоугольника разбиения входят в некоторую цепочку.
б) Аналогичная задача для куба, разбитого на прямоугольные параллелепипеды (в определении цепочки нужно заменить сторону на ребро).

Решение
Даны многоугольник, прямая l и точка P на прямой l в общем положении (то есть все прямые, содержащие стороны многоугольника, пересекают l в различных точках, отличных от P). Отметим те вершины многоугольника, для каждой из которых прямые, на которых лежат выходящие из неё стороны многоугольника, пересекают l по разные стороны от точки P. Докажите, что точка P лежит внутри многоугольника тогда и только тогда, когда по каждую сторону от l отмечено нечётное число вершин.


Решение
Основание пирамиды
SABCD – параллелограмм
ABCD . Какая фигура
получилась в сечении этой пирамиды плоскостью
ABM , где
M –
точка на ребре
SC ?


Решение
Анаграммой называется произвольное слово, полученное из данного слова
перестановкой букв. Сколько анаграмм можно составить из слов:
а) "точка"; б) "прямая"; в) "перешеек"; г) "биссектриса"; д) "абракадабра"; е) "комбинаторика"?


Решение
Расстояние между любыми двумя боковыми рёбрами наклонной
треугольной призмы равно
a . Боковое ребро равно
l и наклонено
к плоскости основания под углом
60
o . Найдите площадь
полной поверхности призмы.

Решение