|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Двое играют в следующую игру. Есть кучка камней. Первый каждым своим ходом берет 1 или 10 камней. Второй каждым своим ходом берёт m или n камней. Ходят по очереди, начинает первый. Тот, кто не может сделать ход, проигрывает. Известно, что при любом начальном количестве камней первый всегда может играть так, чтобы выиграть (при любой игре второго). Какими могут быть m и n? Одновременно из деревень A и Б навстречу друг другу вышли Аня и Боря (их скорости постоянны, но не обязательно одинаковы). Если бы Аня вышла на 30 минут раньше, то они встретились бы на 2 км ближе к деревне Б. Если бы Боря вышел на 30 минут раньше, то встреча состоялась бы ближе к деревне A. На сколько?
|
Страница: 1 [Всего задач: 2]
Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Страница: 1 [Всего задач: 2] |
|||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|