ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Найдите недостающие числа:

Вниз   Решение


Прямая, параллельная стороне AB треугольника ABC, пересекает сторону BC в точке M, а сторону AC – в точке N. Площадь треугольника MCN в два раза больше площади трапеции ABMN. Найдите  CM : MB.

ВверхВниз   Решение


Две окружности с центрами M и N, лежащими на стороне AB треугольника ABC, касаются друг друга и пересекают стороны AC и BC в точках A, P и B, Q соответственно. Причем AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC окружности, если известно, что отношение площади треугольника AQN к площади треугольника MPB равно 15$ \sqrt{2+\sqrt{3}}$)/(5$ \sqrt{3}$).

ВверхВниз   Решение


Докажите, что многочлен  P(x) = (x + 1)6x6 – 2x – 1  делится на  x(x + 1)(2x + 1).

ВверхВниз   Решение


Докажите, что  a1a2...an = anan–1 + ... + (–1)n (mod 11).

ВверхВниз   Решение


За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечно много богатырей и все они стояли по росту (не обязательно в порядке убывания роста).

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 79475

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Частичные, верхние и нижние пределы ]
Сложность: 4-
Классы: 9

За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечно много богатырей и все они стояли по росту (не обязательно в порядке убывания роста).
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .