ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Пролетающие время от времени в опасной близости от нашего спутника Луны астероиды захватываются ее гравитационным полем и, будучи ничем не задерживаемы, врезаются с огромной скоростью в лунную поверхность, оставляя в память о себе порядочных размеров кратеры приблизительно круглой формы. 

Увлекающийся астрономией профессор З. В. Ездочетов занялся изучением современной карты участка лунной поверхности. Он решил найти на ней максимально длинную цепочку вложенных друг в друга кратеров. Зная о Ваших недюжинных способностях в области построения алгоритмов, за помощью в решении этой непростой задачи он обратился к Вам.

Входные данные

Первая строка входного файла содержит целое число N – количество кратеров, отмеченных на карте (1 ≤ N ≤ 500). Следующие N строк содержат описания кратеров с номерами от 1 до N. Описание каждого кратера занимает отдельную строку и состоит из трех целых чисел, принадлежащих диапазону [-32768, 32767] и разделенных пробелами. Первые два числа представляют собой декартовы координаты его центра, а третье – радиус. Все кратеры различны.

Выходные данные

Первая строка выходного файла должна содержать длину искомой цепочки кратеров, вторая – номера кратеров из этой цепочки, начиная с меньшего кратера и кончая самым большим. Номера кратеров должны быть разделены пробелами. Если существует несколько длиннейших цепочек, следует вывести любую из них.

Пример входного файла

4
0 0 30
-15 15 20
15 10 5
10 10 10

Пример выходного файла

3
3 4 1

Вниз   Решение


В массивах a: array[0..k] of integer и b: array[0..l] of integer хранятся коэффициенты двух многочленов степеней k и l. Поместить в массив c: array[0..m] of integer коэффициенты их произведения. (Числа k,l,m — натуральные, m = k + l; элемент массива с индексом i содержит коэффициент при степени i.)

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 76246

Тема:   [ Многочлены ]
Сложность: 2

В массивах a: array[0..k] of integer и b: array[0..l] of integer хранятся коэффициенты двух многочленов степеней k и l. Поместить в массив c: array[0..m] of integer коэффициенты их произведения. (Числа k,l,m — натуральные, m = k + l; элемент массива с индексом i содержит коэффициент при степени i.)
Прислать комментарий     Решение


Задача 98755

 [Бит - реверс]
Тема:   [ Двоичная система счисления ]
Сложность: 2

Целое положительное число m записывается в двоичной системе счисления и разряды (в этой записи) переставляются в обратном порядке. Получившееся число принимается за значение функции B (m). Напечатать значения для m = 512, 513, 514, ... , 1023. Вот, для ясности, начало этой распечатки: 1, 513, 257, ...

Прислать комментарий     Решение

Задача 98778

 [Совершенные числа]
Тема:   [ Простые числа. Разложение на простые множители ]
Сложность: 2

Натуральное число называется совершенным, если оно равно сумме все своих собственных делителей, включая 1. Напечатать все совершенные числа, меньшие, чем заданное число М.

Прислать комментарий     Решение

Задача 98779

 [Период дроби]
Тема:   [ Дроби ]
Сложность: 2

Ввести натуральные числа m и n и напечатать период десятичной дроби m / n. Например, для дроби 1 / 7 периодом будет (142857), а если дробь конечная, то ее период состоит из одной цифры 0.

Прислать комментарий     Решение

Задача 98776

 [Инверсия]
Тема:   [ Перестановки ]
Сложность: 2+

Пусть P = (p1, ... , Pn ) является перестановкой чисел 1, 2, ..., n. Таблицей инверсии перестановки P называют последовательность T = (t1, ..., tn), в которой ti равно числу элементов перестановки Р, стоящих (в Р) левее числа i и больших i. Например, для перестановки Р = ( 5, 9,1, 8, 2, 6, 4, 7, 3 ) чисел 1, ... , 2, ... , 9 таблица инверсий Т = ( 2, 3, 6, 4, 0, 2, 2, 1, 0 ). Написать программу, которая по заданной таблице инверсии восстанавливает перестановку.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .