|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть A1, B1, C1 и D1 — середины сторон CD, DA, AB, BC квадрата ABCD, площадь которого равна S. Найдите площадь четырехугольника, образованного прямыми AA1, BB1, CC1 и DD1. Можно ли расположить в пространстве 12 прямоугольных параллелепипедов P1 , P2 , P12 , ребра которых параллельны координатным осям Ox , Oy , Oz так, чтобы P2 пересекался (т.е. имел хотя бы одну общую точку) с каждым из оставшихся, кроме P1 и P3 , P3 пересекался с каждым из оставшихся, кроме P2 и P4 , и т.д., P12 пересекался с каждым из оставшихся, кроме P11 и P1 , P1 пересекался с каждым из оставшихся, кроме P12 и P2 ? (Поверхность параллелепипеда принадлежит ему.) Предложенный выше алгоритм перемножения многочленов требует порядка n2 действий для перемножения двух многочленов степени n. Придумать более эффективный (для больших n) алгоритм, которому достаточно порядка nlog 4/log 3 действий. Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру. |
Страница: << 1 2 [Всего задач: 6]
Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Страница: << 1 2 [Всего задач: 6] |
|||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|