|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Из натуральных чисел составляются последовательности, в которых каждое последующее число больше квадрата предыдущего, а последнее число в последовательности равно 1969 (последовательности могут иметь разную длину). Доказать, что различных последовательностей такого вида меньше чем 1969. Аксиома индукции. Если известно, что некоторое утверждение верно для 1, и из предположения, что утверждение верно для некоторого n, вытекает его справедливость для n+1, то это утверждение верно для всех натуральных чисел. Докажите, что аксиома индукции равносильна любому из следующих утверждений: 1) всякое непустое подмножество натуральных чисел содержит наименьшее число; 2) всякое конечное непустое подмножество натуральных чисел содержит наибольшее число; 3) если некоторое множество натуральных чисел содержит 1 и вместе с каждым натуральным числом содержит следующее за ним, то оно содержит все натуральные числа; 4) если известно, что некоторое утверждение верно для некоторого a, и из предположения, что утверждение верно для всех натуральных чисел k, таких, что a 5) (Обратная индукция.) Если известно, что некоторое утверждение верно для 1 и 2, и из предположения, что утверждение верно для некоторого n > 1, вытекает его справедливость для 2n и n - 1, то это утверждение верно для всех натуральных чисел. Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме. Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y. Какой наибольший рациональный корень может иметь уравнение вида $ax$² + $bx + c$ = 0, где $a, b$ и $c$ – натуральные числа, не превосходящие 100? Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым? Дан тетраэдр AB С D , в котором AB = AC = 5 , AD = BC = 4 , BD = CD= 3 . Найдите DM , где M – точка пересечения медиан грани ABC . Две стороны треугольника равны 10 и 15. Докажите, что биссектриса угла между ними не больше 12.
Можно ли: |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 107]
На бал пришли n семейных пар. В каждой паре муж и жена абсолютно одинакового роста, но двух пар одного роста нет. Начинает звучать вальс, и все пришедшие разбиваются случайным образом на пары: каждый кавалер танцует со случайно выбранной дамой. Найдите математическое ожидание случайной величины X "Число кавалеров, которые ниже своей партнёрши".
Имеется n случайных векторов вида (y1, y2, y3), где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор a с координатами (Y1, Y2, Y3).
Согласно одной неправдоподобной легенде, Коши и Буняковский очень любили по вечерам играть в дартс. Но мишень у них была необычная – секторы на ней были неравные, так что вероятности попасть в разные секторы были не одинаковы. Однажды Коши бросил дротик и попал в мишень. Следующим бросает Буняковский. Что более вероятно: что Буняковский попадёт в тот же сектор, в который попал Коши, или что он попадёт в следующий сектор по часовой стрелке?
Можно ли:
На рулетке может выпасть любое число от 0 до 2007 с одинаковой вероятностью. Рулетку крутят раз за разом. Обозначим через Pk вероятность того, что в какой-то момент сумма чисел, выпавших при всех сделанных бросках, равна k. Какое число больше: P2007 или P2008?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 107] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|