|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Из точки M, расположенной вне окружности на расстоянии Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$. На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй. Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре? Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет? Докажите, что числа wk (k = 0, ..., n – 1), являющиеся корнями уравнения wn = z, при любом z ≠ 0 располагаются в вершинах правильного n-угольника. |
Страница: 1 2 3 4 >> [Всего задач: 19]
Докажите, что числа wk (k = 0, ..., n – 1), являющиеся корнями уравнения wn = z, при любом z ≠ 0 располагаются в вершинах правильного n-угольника.
Докажите, что квадратные корни из комплексного числа z = a + ib находятся среди чисел w = ±
Как нужно выбрать знак перед вторым слагаемым в скобке, чтобы получить два нужных корня, а не сопряженные к ним числа?
Вычислите
Решите в комплексных числах следующие квадратные уравнения:
Как выглядит формула для корней биквадратного уравнения x4 + px2 + q = 0, если p2 – 4q < 0?
Страница: 1 2 3 4 >> [Всего задач: 19] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|