ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Две окружности пересекаются в точках A и B. К этим окружностям проведена общая касательная, которая касается окружностей в точках C и D. Докажите, что прямая AB делит отрезок CD пополам.

Вниз   Решение


Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника.

ВверхВниз   Решение


Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.

ВверхВниз   Решение


Автор: Карасев Р.

В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.

ВверхВниз   Решение


100 фишек выставлены в ряд. Разрешено менять местами две фишки, стоящие через одну фишку.
Можно ли с помощью таких операций переставить все фишки в обратном порядке?

ВверхВниз   Решение


Наибольшая диагональ правильной шестиугольной призмы равна d и составляет с боковым ребром призмы угол 30o . Найдите объём призмы.

ВверхВниз   Решение


Сколькими способами можно переставить числа от 1 до 100 так, чтобы соседние числа отличались не более, чем на 1?

ВверхВниз   Решение


Постройте многочлен R(x) из задачи 61019, если:
  а)  P(x) = x6 – 6x4 – 4x3 + 9x2 + 12x + 4;
  б)  P(x) = x5 + x4 – 2x3 – 2x2 + x + 1.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 92]      



Задача 61327

Тема:   [ Производная и касательная ]
Сложность: 3
Классы: 10,11

Докажите, что касательная к графику функции f (x), построенная в точке с координатами (x0;f (x0)) пересекает ось Ox в точке с координатой

x0 - $\displaystyle {\frac{f(x_0)}{f'(x_0)}}$.


Прислать комментарий     Решение

Задача 61406

Тема:   [ Выпуклость и вогнутость ]
Сложность: 3
Классы: 10,11

Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2 из [a;b] и любых положительных $ \alpha_{1}^{}$, $ \alpha_{2}^{}$ таких, что $ \alpha_{1}^{}$ + $ \alpha_{2}^{}$ = 1 выполняется неравенство:

f$\displaystyle \left(\vphantom{\alpha_1x_1+\alpha_2x_2}\right.$$\displaystyle \alpha_{1}^{}$x1 + $\displaystyle \alpha_{2}^{}$x2$\displaystyle \left.\vphantom{\alpha_1x_1+\alpha_2x_2}\right)$ > $\displaystyle \alpha_{1}^{}$f (x1) + $\displaystyle \alpha_{2}^{}$f (x2).


Прислать комментарий     Решение

Задача 111923

Темы:   [ Производная и кратные корни ]
[ Производная и экстремумы ]
Сложность: 3
Классы: 10,11

Когда из бассейна сливают воду, уровень h воды в нём меняется в зависимости от времени t по закону

h(t)=at2+bt+c,

а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?
Прислать комментарий     Решение

Задача 61019

Темы:   [ Производная и кратные корни ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 3+
Классы: 10,11

Для данного многочлена P(x) опишем способ, который позволяет построить многочлен R(x), который имеет те же корни, что и P(x), но все кратности 1. Положим  Q(x) = (P(x), P'(x))  и  R(x) = P(x)Q–1(x).  Докажите, что
  а) все корни многочлена P(x) будут корнями R(x);
  б) многочлен R(x) не имеет кратных корней.

Прислать комментарий     Решение

Задача 61020

Темы:   [ Производная и кратные корни ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 3+
Классы: 10,11

Постройте многочлен R(x) из задачи 61019, если:
  а)  P(x) = x6 – 6x4 – 4x3 + 9x2 + 12x + 4;
  б)  P(x) = x5 + x4 – 2x3 – 2x2 + x + 1.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .