ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Айрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.

Вниз   Решение


Длины сторон треугольника ABC не превышают 1.
Докажите, что  p(1 – 2Rr) ≥ 1,  где p – полупериметр, R и r – радиусы описанной и вписанной окружностей треугольника ABC.

ВверхВниз   Решение


Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 60449

 [Маршруты ладьи]
Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?

Прислать комментарий     Решение

Задача 60450

 [Очередь в кассу]
Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?

Прислать комментарий     Решение

Задача 60452

 [Рекуррентное соотношение для чисел Каталана]
Тема:   [ Числа Каталана ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что числа Каталана удовлетворяют рекуррентному соотношению   Cn = C0Cn–1 + C1Cn–2 + ... + Cn–1C0.
Определение чисел Каталана Cn смотри в справочнике.

Прислать комментарий     Решение

Задача 32082

Темы:   [ Числа Каталана ]
[ Рекуррентные соотношения (прочее) ]
[ Системы точек и отрезков (прочее) ]
Сложность: 4
Классы: 8,9,10

На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?

Прислать комментарий     Решение

Задача 60447

Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Сколько последовательностей  {a1, a2, ..., a2n},  состоящих из единиц и минус единиц, обладают тем свойством, что  a1 + a2 + ... + a2n = 0,  а все частичные суммы  a1,  a1 + a2,  ...,  a1 + a2 + ... + a2n  неотрицательны?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .