ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Издевательство

Эпиграф:
Штирлиц ехал на машине, увидел голосующего Бормана, и проехал мимо.
Через некоторое время он снова увидел голосующего Бормана,
и снова проехал мимо. Вскоре он опять увидел голосующего Бормана.
-Издевается! - подумал Борман.
-Кольцевая! - догадался Штирлиц.

В городе N площадей. Любые две площади соединены между собой ровно одной
дорогой с двусторонним движением. В этом городе живет Штирлиц.
У Штирлица есть хобби - он любит воскресным утром выйти из дома,
сесть в машину, выбрать какой-нибудь кольцевой маршрут, проходящий ровно
по трем площадям (то есть сначала он едет с какой-то площади на
какую-то другую, потом - на третью, затем возвращается на начальную,
и опять едет по этому маршруту). Он воображает, что где-то на этом
пути стоит Борман. И так вот ездит Штирлиц все воскресенье, пока голова
не закружится, и радуется...
Естественно, что Штирлицу хочется проезжать мимо точки, в которой,
как он воображает, стоит Борман, как можно чаще. Для этого, естественно,
выбранный Штирлицем маршрут должен быть как можно короче. Напишите
программу, которая выберет оптимальный для Штирлица маршрут.

Входные данные
Во входном файле INPUT.TXT записано сначала число N (3<=N<=100), а затем
матрица NxN расстояний между площадями (число в позиции i,j
обозначает длину дороги, соединяющей i-ую и j-ую площади).
Все числа в матрице (кроме стоящих на главной диагонали) - натуральные,
не превышающие 1000.  Матрица симметрична относительно главной диагонали,
на главной диагонали стоят 0.

Выходные данные
В выходной файл OUTPUT.TXT выведите номера площадей в оптимальном маршруте.
Если маршрутов несколько, выведите любой из них.

Пример файла INPUT.TXT	
5
0  20 10   30 40
20 0  30   1  2
10 30 0    40 1000
30 1  40   0  21
40 2  1000 21 0	

Пример файла OUTPUT.TXT
4 5 2

Вниз   Решение


Пусть дан выпуклый (2n + 1)-угольник  A1A3A5...A2n + 1A2...A2n. Докажите, что среди всех замкнутых ломаных с вершинами в его вершинах наибольшую длину имеет ломаная  A1A2A3...A2n + 1A1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 57321

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5
Классы: 8

Дана замкнутая ломаная, причем любая другая замкнутая ломаная с теми же вершинами имеет большую длину. Докажите, что эта ломаная несамопересекающаяся.
Прислать комментарий     Решение


Задача 57322

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5
Классы: 8

Сколько сторон может иметь выпуклый многоугольник, все диагонали которого имеют одинаковую длину?
Прислать комментарий     Решение


Задача 57323

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5+
Классы: 8

На плоскости даны n красных и n синих точек, никакие три из которых не лежат на одной прямой. Докажите, что можно провести n отрезков с разноцветными концами, не имеющих общих точек.
Прислать комментарий     Решение


Задача 57325

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5+
Классы: 8

Пусть дан выпуклый (2n + 1)-угольник  A1A3A5...A2n + 1A2...A2n. Докажите, что среди всех замкнутых ломаных с вершинами в его вершинах наибольшую длину имеет ломаная  A1A2A3...A2n + 1A1.
Прислать комментарий     Решение


Задача 103771

Темы:   [ Неравенство треугольника (прочее) ]
[ Сумма длин диагоналей четырехугольника ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

В результате измерения четырёх сторон и одной из диагоналей некоторого четырёхугольника получились числа: 1; 2; 2,8; 5; 7,5. Чему равна длина измеренной диагонали?

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .