ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC  AB = BC = 6.  На стороне AB как на диаметре построена окружность, пересекающая сторону BC в точке D так, что  BD : DC = 2 : 1.
Найдите AC.

Вниз   Решение


В гости пришло 10 гостей и каждый оставил в коридоре пару калош. Все пары калош имеют разные размеры. Гости начали расходиться по одному, одевая любую пару калош, в которые они могли влезть (т.е. каждый гость мог надеть пару калош, не меньшую, чем его собственные). В какой-то момент обнаружилось, что ни один из оставшихся гостей не может найти себе пару калош, чтобы уйти. Какое максимальное число гостей могло остаться?

ВверхВниз   Решение


Даны отрезки, длины которых равны a, b и c. Постройте отрезок длиной: a) ab/c; б) $ \sqrt{ab}$.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 487]      



Задача 57190

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Постройте треугольник ABC по стороне a, высоте ha и углу A.
Прислать комментарий     Решение


Задача 57191

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Постройте прямоугольный треугольник по катету и гипотенузе.
Прислать комментарий     Решение


Задача 57192

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Постройте окружность с данным центром, касающуюся данной окружности.
Прислать комментарий     Решение


Задача 57193

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Постройте прямую, проходящую через данную точку и касающуюся данной окружности.
Прислать комментарий     Решение


Задача 57194

Тема:   [ Построения (прочее) ]
Сложность: 2-
Классы: 7,8

Даны отрезки, длины которых равны a, b и c. Постройте отрезок длиной: a) ab/c; б) $ \sqrt{ab}$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 487]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .