ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
Докажите, что в этом четырёхугольнике равны диагонали.

Вниз   Решение


Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника  — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника  — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?

ВверхВниз   Решение


На кружок пришли дети из двух классов: Ваня, Дима, Егор, Инна, Леша, Саша и Таня. На вопрос: "Сколько здесь твоих одноклассников?" каждый честно ответил "Двое" или "Трое". Но мальчики думали, что спрашивают только про мальчиков-одноклассников, а девочки правильно понимали, что спрашивают про всех. Кто Саша – мальчик или девочка?

ВверхВниз   Решение


а) Найдите ГМТ, равноудаленных от двух параллельных прямых.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 57124

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

а) Найдите ГМТ, равноудаленных от двух параллельных прямых.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.
Прислать комментарий     Решение


Задача 57125

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.
Прислать комментарий     Решение


Задача 57126

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Дан треугольник ABC. Найдите ГМТ X, удовлетворяющих неравенствам  AX $ \leq$ BX $ \leq$ CX.
Прислать комментарий     Решение


Задача 57127

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.
Прислать комментарий     Решение


Задача 57128

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

На окружности фиксирована точка A. Найдите ГМТ X, делящих хорды с концом A в отношении 1 : 2, считая от точки A.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .