ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В вершинах правильного 1983-угольника расставлены числа 1, 2, ..., 1983. Любая его ось симметрии делит числа, не лежащие на ней, на два множества. Назовём расстановку "хорошей" относительно данной оси симметрии, если каждое число одного множества больше симметричного ему числа. Существует ли расстановка, являющаяся "хорошей" относительно любой оси симметрии?

Вниз   Решение


Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).

ВверхВниз   Решение


По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел  a – d  и  b – c  отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.

ВверхВниз   Решение


Автор: Жуков Г.

Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?

ВверхВниз   Решение


Сколькими способами число 1979 можно представить в виде разности двух квадратов натуральных чисел?

ВверхВниз   Решение


Многоугольник можно разрезать на две равные части тремя различными способами.
Верно ли, что у него обязательно есть центр или ось симметрии?

ВверхВниз   Решение


У деда Мороза бесконечное число конфет. За минуту до Нового года дед Мороз дает детям 100 конфет, а Снегурочка одну конфету отбирает. За полминуты до наступления Нового года дед Мороз дает детям еще 100 конфет, а Снегурочка снова одну конфету отбирает. То же самое повторяется за 15 секунд, за 7,5 секунд и т.д. до Нового года. Докажите, что Снегурочка сможет к Новому году отобрать у детей все конфеты.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 79636

Тема:   [ Парадоксы ]
Сложность: 2
Классы: 5,6,7

Петя написал на доске верное равенство: 35+10-41=42+12-50, а   затем вычел из обеих частей по 4:  35+10-45=42+12-54. Он заметил, что в левой части равенства все числа делятся на 5, а в правой - на 6.  Тогда он вынес в левой части 5 за скобки, а в правой - 6 и получил 5(7+2-9)=6(7+2-9). Сократив обе части на общий множитель, Петя получил, что 5=6. Где он ошибся?
Прислать комментарий     Решение


Задача 87969

Темы:   [ Парадоксы ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

  Старый сапожник Карл сшил сапоги и послал своего сына Ганса на базар – продать их за 25 талеров. На базаре к мальчику подошли два инвалида (один без левой ноги, другой – без правой) и попросили продать им по сапогу. Ганс согласился и продал каждый сапог за 12,5 талеров.
  Когда мальчик пришёл домой и рассказал всё отцу, Карл решил, что инвалидам надо было продать сапоги дешевле – каждому за 10 талеров. Он дал Гансу 5 талеров и велел вернуть каждому инвалиду по 2,5 талера.
  Пока мальчик искал на базаре инвалидов, он увидел, что продают сладости, не смог удержаться и истратил 3 талера на конфеты. После этого он нашёл инвалидов и отдал им оставшиеся деньги – каждому по одному талеру. Возвращаясь домой, Ганс понял, как нехорошо он поступил. Он рассказал всё отцу и попросил прощения. Сапожник сильно рассердился и наказал сына, посадив его в тёмный чулан.
  Сидя в чулане, Ганс задумался. Получалось, что раз он вернул по одному талеру, то инвалиды заплатили за каждый сапог по 11,5 талеров:
12,5 – 1 = 11,5.  Значит, сапоги стоили 23 талера:  2·11,5 = 23.  И 3 талера Ганс истратил на конфеты, следовательно, всего получается 26 талеров:
23 + 3 = 26.  Но ведь было-то 25 талеров! Откуда же взялся лишний талер?

Прислать комментарий     Решение

Задача 35648

Тема:   [ Парадоксы ]
Сложность: 2+
Классы: 7,8,9

У деда Мороза бесконечное число конфет. За минуту до Нового года дед Мороз дает детям 100 конфет, а Снегурочка одну конфету отбирает. За полминуты до наступления Нового года дед Мороз дает детям еще 100 конфет, а Снегурочка снова одну конфету отбирает. То же самое повторяется за 15 секунд, за 7,5 секунд и т.д. до Нового года. Докажите, что Снегурочка сможет к Новому году отобрать у детей все конфеты.
Прислать комментарий     Решение


Задача 89911

Темы:   [ Парадоксы ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7

Башенные часы отбивают три удара за 12 с. В течение какого времени они пробьют шесть ударов?
Прислать комментарий     Решение


Задача 35178

Темы:   [ Парадоксы ]
[ Теория вероятностей (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Каждый вечер Иван Таранов приходит в случайное время на автобусную остановку. На этой остановке останавливаются два маршрута - на одном из них Иван может ехать к себе домой, а на другом - в гости к другу Козявкину. Иван ждет первого автобуса и в зависимости от того, какой автобус подошел, он едет либо домой, либо к другу. Через некоторое время Иван заметил, что в гостях у Козявкина он оказывается при этом примерно в два раза чаще, чем дома. На основе этого Иван делает вывод, что один из автобусов ходит в два раза чаще другого. Прав ли он? Могут ли при выполнении условия задачи автобусы ходить с одинаковой частотой? (Предполагается, что автобусы ходят не случайным образом, а по некоторому расписанию.)
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .