ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Числа по кругу. Расставьте по кругу числа 14, 27, 36, 57, 178, 467, 590, 2345 так, чтобы любые два соседних числа имели общую цифру.

Вниз   Решение


Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.

ВверхВниз   Решение


Сколько существует двузначных чисел, у которых цифра десятков больше цифры единиц?

ВверхВниз   Решение


Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?

ВверхВниз   Решение


Я купил лотерейный билет, у которого сумма цифр его пятизначного номера оказалась равна возрасту моего соседа. Определите номер этого билета, если известно, что мой сосед без труда решил эту задачу.

ВверхВниз   Решение


Какое наибольшее количество непересекающихся диагоналей можно провести в выпуклом n-угольнике (допускаются диагонали, имеющие общую вершину)?

ВверхВниз   Решение


Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырехугольников?

ВверхВниз   Решение


Биллиард имеет форму выпуклого четырехугольника ABCD. Из точки K стороны AB выпустили биллиардный шар, который отразился в точках L, M, N от сторон BC, CD, DA, возвратился в точку K и вновь вышел на траекторию KLMN. Докажите, что четырехугольник ABCD можно вписать в окружность.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 77]      



Задача 35179

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Биллиард имеет форму выпуклого четырехугольника ABCD. Из точки K стороны AB выпустили биллиардный шар, который отразился в точках L, M, N от сторон BC, CD, DA, возвратился в точку K и вновь вышел на траекторию KLMN. Докажите, что четырехугольник ABCD можно вписать в окружность.
Прислать комментарий     Решение


Задача 35139

Темы:   [ Подсчет двумя способами ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 9,10,11

Какое наибольшее количество непересекающихся диагоналей можно провести в выпуклом n-угольнике (допускаются диагонали, имеющие общую вершину)?

Прислать комментарий     Решение

Задача 35463

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3
Классы: 8,9

Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырехугольников?
Прислать комментарий     Решение


Задача 53380

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Ломаные ]
Сложность: 3
Классы: 7,8,9

Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.

Прислать комментарий     Решение

Задача 55631

Темы:   [ Центральная симметрия ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .