Страница: 1
2 3 >> [Всего задач: 12]
[Маршруты ладьи]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?
[Очередь в кассу]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?
[Рекуррентное соотношение для чисел Каталана]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Докажите, что числа Каталана удовлетворяют рекуррентному соотношению
Cn = C0Cn–1 + C1Cn–2 + ... + Cn–1C0.
Определение чисел Каталана Cn смотри в справочнике.
|
|
Сложность: 4 Классы: 8,9,10
|
На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Сколько последовательностей {a1, a2, ..., a2n}, состоящих из единиц и минус единиц, обладают тем свойством, что a1 + a2 + ... + a2n = 0, а все частичные суммы a1, a1 + a2, ..., a1 + a2 + ... + a2n неотрицательны?
Страница: 1
2 3 >> [Всего задач: 12]