|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Существуют ли числа такие p и q, что уравнения x² + (p – 1)x + q = 0 и x² + (p + 1)x + q = 0 имеют по два различных корня, а уравнение На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел. Дана четырёхугольная пирамида SABCD , основание которой – трапеция ABCD . Отношение оснований AD и BC этой трапеции равно 2. Постройте сечение пирамиды плоскостью, проходящей через точку D и середины ребер SA и SB . В каком отношении эта плоскость делит ребро SC ? Хорды AB и AC равны между собой. Образованный ими вписанный в окружность угол равен 30o. Найдите отношение площади той части круга, которая заключена в этом угле, к площади всего круга.
Про квадратный трехчлен f(x) = ax² – ax + 1 известно, что | f(x)| ≤ 1 при 0 ≤ x ≤ 1. Найдите наибольшее возможное значение а. На столе стоят 16 стаканов. Из них 15 стаканов стоят правильно, а один перевёрнут донышком вверх. Разрешается одновременно переворачивать любые четыре стакана. Можно ли, повторяя эту операцию, поставить все стаканы правильно? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]
На шести ёлках сидят шесть чижей, на каждой ёлке – по чижу. Ёлки растут в ряд с интервалами в 10 метров. Если какой-то чиж перелетает с одной ёлки на другую, то какой-то другой чиж обязательно перелетает на столько же метров, но в
обратном направлении.
На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел.
Примечание. Как ни странно, но в некотором смысле это тоже задача на инвариант.
На столе стоят 16 стаканов. Из них 15 стаканов стоят правильно, а один перевёрнут донышком вверх. Разрешается одновременно переворачивать любые четыре стакана. Можно ли, повторяя эту операцию, поставить все стаканы правильно?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|