|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На рёбрах AB , BC и AD тетраэдра ABCD взяты точки K , N и M соответственно, причём AK:KB = BN:NC = 2:1 , AM:MD = 3:1 . Постройте сечение тетраэдра плоскостью, проходящей через точки K , M и N . В каком отношении эта плоскость делит ребро CD ? На боковых сторонах AB и BC равнобедренного треугольника ABC расположены точки соответственно M и N так, что Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины. Докажите, что если а < 1, b < 1 и a + b ≥ 0,5, то (1 – a)(1 – b) ≤ 9/16. Основание пирамиды SABCD – параллелограмм ABCD . Какая фигура получилась в сечении этой пирамиды плоскостью ABM , где M – точка на ребре SC ? У короля 19 баронов-вассалов. Может ли оказаться так, что у каждого вассального баронства одно, пять или девять соседних баронств? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 123]
У короля 19 баронов-вассалов. Может ли оказаться так, что у каждого вассального баронства одно, пять или девять соседних баронств?
Может ли в государстве, в котором из каждого города выходит три дороги, быть ровно 100 дорог?
Джон, приехав из Диснейленда, рассказывал, что там на заколдованном озере имеются семь островов, с каждого из которых ведет один, три или пять мостов. Верно ли, что хотя бы один из этих мостов обязательно выходит на берег озера?
Докажите, что число людей, когда-либо живших на Земле и сделавших нечётное число рукопожатий, чётно.
Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 123] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|