ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

В комнате у Папы Карло на каждой стене висят часы, причём они все показывают неверное время: первые часы ошибаются на 2 минуты, вторые – на 3 минуты, третьи – на 4 минуты и четвёртые – на 5 минут. Однажды Папа Карло, выходя на улицу, решил узнать точное время и увидел такие показания часов: 14:54, 14:57, 15:02 и 15:03. Помогите Папе Карло определить точное время.

Вниз   Решение


Докажите, что две различные плоскости, перпендикулярные одной и той же прямой, параллельны.

ВверхВниз   Решение


Дан $ \Delta$ABC. Центры вневписанных окружностей O1, O2 и O3 соединены прямыми. Доказать, что $ \Delta$O1O2O3 — остроугольный.

ВверхВниз   Решение


Многоугольник описан около окружности радиуса r. Докажите, что его площадь равна pr, где p — полупериметр многоугольника.

ВверхВниз   Решение


Пусть  A1, B1, C1 и D1 — середины сторон  CD, DA, AB, BC квадрата ABCD, площадь которого равна S. Найдите площадь четырехугольника, образованного прямыми  AA1, BB1, CC1 и DD1.

ВверхВниз   Решение


Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.

ВверхВниз   Решение


На хоккейном поле лежат три шайбы А, В и С. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими.
Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 30778

Темы:   [ Четность перестановки ]
[ Разложение в произведение транспозиций и циклов ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

В ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа.
Может ли после 1989 таких операций порядок чисел оказаться исходным?

Прислать комментарий     Решение

Задача 98331

Темы:   [ Четность перестановки ]
[ Обход графов ]
[ Перестройки ]
Сложность: 5+
Классы: 9,10,11

Автор: Фомин С.В.

  а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на окружности круглого острова. Их связывает плоская сеть дорог, на которых могут быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются дороги. На всех участках дорог введено одностороннее движение так, что, выехав от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть  fij  означает число различных путей, идущих из порта i в порт j. Докажите неравенство   f14f23f13f24.
  б) Докажите, что если портов шесть: 1, 2, 3, 4, 5, 6 (по кругу в этом порядке), то   f16f25f34 + f15f24f36 + f14f26f35f16f24f35 + f15f26f34 + f14f25f36.

Прислать комментарий     Решение

Задача 30286

Темы:   [ Четность и нечетность ]
[ Четность перестановки ]
Сложность: 2+
Классы: 6,7

На хоккейном поле лежат три шайбы А, В и С. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими.
Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?

Прислать комментарий     Решение

Задача 67032

Темы:   [ Кооперативные алгоритмы ]
[ Четность перестановки ]
Сложность: 4-
Классы: 9,10,11

Султан собрал 300 придворных мудрецов и предложил им испытание. Имеются колпаки 25 различных цветов, заранее известных мудрецам. Султан сообщил, что на каждого из мудрецов наденут один из этих колпаков, причём если для каждого цвета написать количество надетых колпаков, то все числа будут различны. Каждый мудрец будет видеть колпаки остальных мудрецов, а свой колпак нет. Затем все мудрецы одновременно огласят предполагаемый цвет своего колпака. Могут ли мудрецы заранее договориться действовать так, чтобы гарантированно хотя бы 150 из них назвали цвет верно?

Прислать комментарий     Решение

Задача 115987

Темы:   [ Процессы и операции ]
[ Арифметика остатков (прочее) ]
[ Четность перестановки ]
[ Кооперативные алгоритмы ]
Сложность: 5
Классы: 8,9,10,11

Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.
  а) Могут ли они гарантировать результат более 500?
  б) Могут ли они гарантировать результат не менее 999?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .