ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

Вниз   Решение


Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)

ВверхВниз   Решение


Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 185]      



Задача 116843

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2
Классы: 6,7

Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?

Прислать комментарий     Решение

Задача 102849

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2
Классы: 6,7

Режем на равные части. Разрежьте фигуру на равные части (на две одинаковые по форме, и по площади части).


Прислать комментарий     Решение

Задача 35670

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 7,8

Замостите плоскость одинаковыми пятиугольниками.
Прислать комментарий     Решение


Задача 65958

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 2+
Классы: 8,9,10

Верно ли, что любой треугольник можно разбить на четыре равнобедренных треугольника?

Прислать комментарий     Решение

Задача 102846

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 6,7

Квадрат на шестиугольники. Разрежьте квадрат на два равных шестиугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .