ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Является ли число степенью двойки?

Вводится число. Напечатать YES, если оно является степенью двойки,
NO - иначе

Пример входного файла
8

Пример выходного файла
YES



Пример входного файла
22

Пример выходного файла
NO

Вниз   Решение


Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ?

ВверхВниз   Решение


Высота цилиндра равна h . В каждое основания вписан правильный треугольник со стороной a , причём один из этих треугольников повернут относительно другого на угол 60o . Найдите объём многогранника, вершинами которого являются все вершины этих треугольников.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 110405

Темы:   [ Цилиндр ]
[ Объем многогранников ]
Сложность: 3
Классы: 10,11

Высота цилиндра равна h . В каждое основания вписан правильный треугольник со стороной a , причём один из этих треугольников повернут относительно другого на угол 60o . Найдите объём многогранника, вершинами которого являются все вершины этих треугольников.
Прислать комментарий     Решение


Задача 109940

Темы:   [ Правильный тетраэдр ]
[ Центральная симметрия ]
[ Параллельный перенос ]
[ Движение помогает решить задачу ]
[ Объем многогранников ]
[ Вычисление объемов ]
Сложность: 7-
Классы: 10,11

Даны два правильных тетраэдра с ребрами длины , переводящихся один в другой при центральной симметрии. Пусть ϕ – множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры ϕ .
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .