ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Петя и Вася нарисовали по четырёхугольнику без параллельных сторон. Каждый провёл в своём четырёхугольнике одну из диагоналей и вычислил углы, образованные этой диагональю со сторонами своего четырёхугольника. Петя получил числа α, α, β и γ (в некотором порядке), и Вася – тоже эти числа (возможно, в другом порядке). Докажите, что диагонали четырёхугольника Пети пересекаются под теми же углами, что и диагонали четырёхугольника Васи.

Вниз   Решение


Существует ли выпуклый многогранник, у которого есть диагонали и каждая диагональ меньше любого ребра?

ВверхВниз   Решение


а) Найдите геометрическое место центров тяжести треугольников, вершины которых лежат на сторонах данного треугольника (по одной вершине внутри каждой стороны).

б) Найдите геометрическое место центров тяжести тетраэдров, вершины которых лежат на гранях данного тетраэдра (по одной вершине внутри каждой грани).

ВверхВниз   Решение


Докажите, что не существует конечного множества, содержащего более 2N ( N>3 ) попарно неколлинеарных векторов на плоскости, обладающего следующими двумя свойствами.

  1. Для любых N векторов этого множества найдется еще такой N-1 вектор из этого множества, что сумма всех 2N-1 векторов равна нулю;
  2. для любых N векторов этого множества найдутся еще такие N векторов из этого множества, что сумма всех 2N векторов равна нулю.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 57717

Тема:   [ Вспомогательные проекции ]
Сложность: 3
Классы: 9

Точка X лежит внутри треугольника ABC, $ \alpha$ = SBXC, $ \beta$ = SCXA и  $ \gamma$ = SAXB. Пусть A1, B1 и C1 — проекции точек A, B и C на произвольную прямую l. Докажите, что длина вектора $ \alpha$$ \overrightarrow{AA_1}$ + $ \beta$$ \overrightarrow{BB_1}$ + $ \gamma$$ \overrightarrow{CC_1}$ равна ($ \alpha$ + $ \beta$ + $ \gamma$)d, где d — расстояние от точки X до прямой l.
Прислать комментарий     Решение


Задача 57718

Тема:   [ Вспомогательные проекции ]
Сложность: 5
Классы: 9

Выпуклый 2n-угольник A1A2...A2n вписан в окружность радиуса 1. Докажите, что

|$\displaystyle \overrightarrow{A_1A_2}$ + $\displaystyle \overrightarrow{A_3A_4}$ +...+ $\displaystyle \overrightarrow{A_{2n-1}A_{2n}}$|$\displaystyle \le$2.


Прислать комментарий     Решение

Задача 57719

Тема:   [ Вспомогательные проекции ]
Сложность: 5
Классы: 9

Пусть a1, a2, ..., a2n + 1 — векторы длины 1. Докажите, что в сумме c = ±a1±a2±...±a2n + 1 знаки можно выбрать так, что |c|$ \le$1.
Прислать комментарий     Решение


Задача 109799

Темы:   [ Вспомогательные проекции ]
[ Принцип крайнего (прочее) ]
[ Системы точек и отрезков (прочее) ]
Сложность: 5+
Классы: 9,10,11

Докажите, что не существует конечного множества, содержащего более 2N ( N>3 ) попарно неколлинеарных векторов на плоскости, обладающего следующими двумя свойствами.

  1. Для любых N векторов этого множества найдется еще такой N-1 вектор из этого множества, что сумма всех 2N-1 векторов равна нулю;
  2. для любых N векторов этого множества найдутся еще такие N векторов из этого множества, что сумма всех 2N векторов равна нулю.
Прислать комментарий     Решение

Задача 57720

Тема:   [ Вспомогательные проекции ]
Сложность: 5+
Классы: 9

Пусть a, b и c — длины сторон треугольника ABC, na, nb и  nc — векторы единичной длины, перпендикулярные соответствующим сторонам и направленные во внешнюю сторону. Докажите, что

a3na + b3nb + c3nc = 12S . $\displaystyle \overrightarrow{MO}$,

где S — площадь, M — точка пересечения медиан, O — центр описанной окружности треугольника ABC.
Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .