|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад? Длины сторон треугольника ABC не превышают 1. Карлсон написал дробь 10/97. Малыш может: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 127]
Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?
Какое число нужно вычесть из числителя дроби 537/463 и прибавить к знаменателю, чтобы после сокращения получить 1/9?
Как разделить семь яблок между 12 мальчиками, если ни одно яблоко нельзя резать более чем на пять частей?
Карлсон написал дробь 10/97. Малыш может:
a) Придумайте три правильные несократимые дроби, сумма которых – целое число, а если каждую из этих дробей "перевернуть" (то есть заменить на
обратную), то сумма полученных дробей тоже будет целым числом.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 127] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|