ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дано 51 различное двузначное число (однозначные числа считаем двузначными с первой цифрой 0). Докажите, что из них можно выбрать 6 таких чисел, что никакие 2 из них не имеют одинаковых цифр ни в одном разряде.

Вниз   Решение


На сторонах AB, BC и CD параллелограмма ABCD взяты точки K, L и M соответственно, делящие эти стороны в одинаковых отношениях. Пусть b, c, d — прямые, проходящие через B, C, D параллельно прямым KL, KM, ML соответственно. Докажите, что прямые b, c, d проходят через одну точку.

ВверхВниз   Решение


На плоскости заданы выпуклый многоугольник M и точка P(x, y). За один ход разрешается центрально-симметрично отразить многоугольник относительно середины любой из его сторон. Требуется найти последовательность ходов, в результате которой точка P оказалась бы накрытой этим многоугольником. 

Входные данные

Во входном файле записано количество вершин многоугольника N (3 ≤ N ≤ 20) и координаты точки x и y. Далее перечислены координаты вершин многоугольника в порядке обхода по часовой стрелке. Все координаты – целые числа, не превосходящие по абсолютной величине 105.

Выходные данные

Если точку P накрыть нельзя, запишите в выходной файл сообщение «Impossible». В противном случае выведите в него последовательность ходов, после выполнения которой многоугольник M накроет точку P. Каждый ход задается номерами вершин той стороны, относительно середины которой производится преобразование центральной симметрии. Вершины многоугольника нумеруются начиная с 1.

Пример входного файла

3 3 2
0 1 1 2 1 0

Пример выходного файла

2 3
3 1
2 3

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 98756

 [Треугольник и точка.]
Тема:   [ Многоугольники ]
Сложность: 2

Заданы прямоугольные координаты х1, y1; х2, y2; х3 вершин треугольника и координаты x, y. Определить и напечатать, находится ли точка в треугольнике. Погрешностями вычислений пренебречь.

Прислать комментарий     Решение

Задача 102937

 [Шагающий многоугольник ]
Темы:   [ Многоугольники ]
[ Движения ]
Сложность: 4-

На плоскости заданы выпуклый многоугольник M и точка P(x, y). За один ход разрешается центрально-симметрично отразить многоугольник относительно середины любой из его сторон. Требуется найти последовательность ходов, в результате которой точка P оказалась бы накрытой этим многоугольником. 

Входные данные

Во входном файле записано количество вершин многоугольника N (3 ≤ N ≤ 20) и координаты точки x и y. Далее перечислены координаты вершин многоугольника в порядке обхода по часовой стрелке. Все координаты – целые числа, не превосходящие по абсолютной величине 105.

Выходные данные

Если точку P накрыть нельзя, запишите в выходной файл сообщение «Impossible». В противном случае выведите в него последовательность ходов, после выполнения которой многоугольник M накроет точку P. Каждый ход задается номерами вершин той стороны, относительно середины которой производится преобразование центральной симметрии. Вершины многоугольника нумеруются начиная с 1.

Пример входного файла

3 3 2
0 1 1 2 1 0

Пример выходного файла

2 3
3 1
2 3
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .