ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 123]      



Задача 97980

Темы:   [ Раскраски ]
[ Куб ]
Сложность: 2+
Классы: 7,8,9,10

Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.

Прислать комментарий     Решение

Задача 103954

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 6,7,8

Несколько гномов, навьючив свою поклажу на пони, отправились в дальний путь. Их заметили тролли, которые насчитали в караване 36 ног и 15 голов. Сколько было гномов, и сколько пони?

Прислать комментарий     Решение

Задача 103956

Темы:   [ Задачи на движение ]
[ Процессы и операции ]
Сложность: 2+
Классы: 5,6,7,8

Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3.
Когда она доползет до цели, если стартовала улитка утром в понедельник?

Прислать комментарий     Решение

Задача 104015

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 7,8,9

Олег собрал мешочек монет. Саша пересчитал их, и оказалось, что если разделить все монеты на пять равных кучек, то останется две лишние монеты. А если на четыре равные кучки – останется одна лишняя монета. В то же время монетки можно разделить на три равные кучки. Какое наименьшее число монет могло быть у Олега?

Прислать комментарий     Решение

Задача 104017

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

После урока Олег поспорил с Сашей, уверяя, что он знает такое натуральное число m, что число  m/3 + m²/2 + m³/6  нецелое. Прав ли Олег? И если прав, то что это за число?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 123]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .