|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Неориентированный граф называется четно-нечетным, если найдутся две его вершины, между которыми существует пути как из четного, так и из нечетного числа ребер. Напишите программу, которая: a) определяет, является ли заданный граф четно-нечетным; б) В случае отрицательного ответа на пункт а) находит максимальное подмножество X вершин графа такое, что для любых двух вершин i и j из X выполняется следующее условие: все пути между i и j состоят из четного числа ребер. Входные данные Первая строка входного файла содержит число вершин графа N (1 ≤ N ≤ 100), а каждая последующая – пару чисел (i, j), означающих, что в графе присутствует ребро, соединяющее вершины с номерами i и j. Выходные данные Первая строка выходного файла должна содержать ответ на пункт А в форме YES/NO. В случае отрицательного ответа на пункт А вторая строка должна содержать количество вершин в множестве X, а третья – номера вершин из этого множества в порядке возрастания, записанные через пробел. Если вариантов решений несколько, то достаточно вывести любое из них. Пример входного файла 3 1 2 Пример выходного файла NO 2 2 3 |
Страница: 1 2 >> [Всего задач: 7]
Один мальчик 16 февраля 2003 года сказал: "Разность между числами прожитых мною (полных) месяцев и прожитых (полных) лет сегодня впервые стала равна 111". Когда он родился?
Верно ли утверждение: "Если две стороны и три угла одного треугольника равны двум сторонам и трём углам другого треугольника, то такие треугольники равны"?
На Нью-Васюковской валютной бирже за 11 тугриков дают 14 динаров, за 22 рупии – 21 динар, за 10 рупий – 3 талера, а за 5 крон – 2 талера. Сколько тугриков можно выменять за 13 крон?
Страница: 1 2 >> [Всего задач: 7] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|