ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 557]      



Задача 65430

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10,11

Василиса Премудрая расставляет все натуральные числа от 1 до n², где  n > 1,  в клетки таблицы размером n×n. Кандидат в женихи должен вычеркнуть строку и столбец так, чтобы сумма всех оставшихся чисел была чётной. Всегда ли выполнимо такое задание?

Прислать комментарий     Решение

Задача 65433

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Можно ли расставить натуральные числа от 1 до 10 в ряд так, чтобы каждое число было делителем суммы всех предыдущих?

Прислать комментарий     Решение

Задача 65480

Темы:   [ Тригонометрические уравнения ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 4-
Классы: 10,11

Решите уравнение  2 sin πx/2 – 2 cos πx = x5 + 10x – 54.

Прислать комментарий     Решение

Задача 65481

Темы:   [ Правильный (равносторонний) треугольник ]
[ Неравенство треугольника (прочее) ]
[ Против большей стороны лежит больший угол ]
[ Правильный тетраэдр ]
Сложность: 4-
Классы: 10,11

На сторонах BC и AC правильного треугольника ABC отмечены точки X и Y соответственно.
Докажите, что из отрезков AX, BY и XY можно составить треугольник.

Прислать комментарий     Решение

Задача 65483

Тема:   [ Тождественные преобразования ]
Сложность: 4-
Классы: 10,11

Алгебраисты придумали новую операцию ❆, которая удовлетворяет условиям:  аа = 0  и  а ❆ (bc) = (ab) + c.  Вычислите  2015 ❆ 2014.  (Знак "+" определяет сложение в обычном смысле, скобки показывают порядок действий.)

Прислать комментарий     Решение

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .