ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутрь квадрата с координатами левого нижнего угла (0, 0) и координатами правого верхнего угла (100, 100) поместили N квадратиков, стороны которых параллельны осям координат и имеют длину 5. Никакие два квадратика не имеют общих точек. Необходимо найти кратчайший путь из точки (0, 0) в точку (100, 100), который бы не пересекал ни одного из этих N квадратиков.

Входные данные

В первой строке входного файла содержится целое число N (1 ≤ N ≤ 30), в каждой следующих N строк – координаты левого нижнего угла (x, y) очередного из квадратиков (0 ≤ x, y ≤ 95).

Выходные данные

Выведите в выходной файл координаты точек искомого пути, в которых меняется направление движения (включая начальную и конечную точки). Порядок точек в выходном файле должен соответствовать порядку точек в пути.

Пример входного файла

5
5 5
5 15
15 10
15 20
90 90

Пример выходного файла

0 0
5 10
20 20
95 90
100 100

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 57974  (#19.000.1)

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

Докажите, что при гомотетии окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57975  (#19.000.2)

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.
Прислать комментарий     Решение


Задача 57976  (#19.000.3)

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую — в точках C и D. Докажите, что AB| CD.
Прислать комментарий     Решение


Задача 57977  (#19.000.4)

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.
Прислать комментарий     Решение


Задача 57978  (#19.000.5)

Тема:   [ Гомотетия и поворотная гомотетия ]
Сложность: 2-
Классы: 9

На плоскости даны точки A и B и прямая l. По какой траектории движется точка пересечения медиан треугольников ABC, если точка C движется по прямой l?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .