|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Несколько прямых делят плоскость на части. Докажите, что эти части можно раскрасить в 2 цвета так, что граничащие части будут иметь разный цвет. Дана клетчатая полоска (шириной в одну клетку), бесконечная в обе стороны. Две клетки полоски являются ловушками, между ними – N клеток, на одной из которых сидит кузнечик. На каждом ходу мы называем натуральное число, после чего кузнечик прыгает на это число клеток влево или вправо (по своему выбору). При каких N можно называть числа так, чтобы гарантированно загнать кузнечика в одну из ловушек, где бы он ни был изначально между ловушками и как бы ни выбирал направления прыжков? (Мы всё время видим, где сидит кузнечик.) Девочки на улице. На улице, став в кружок, разговаривают четыре девочки: Аня, Валя, Галя и Нина. Девочка в зеленом платье (не Аня и не Валя) стоит между девочкой в голубом платье и Ниной. Девочка в белом платье стоит между девочкой в розовом платье и Валей. Какое платье на каждой из девочек? |
Страница: << 1 2 [Всего задач: 7]
Страница: << 1 2 [Всего задач: 7] |
||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|